Macrocyclic Gd3+ chelates attached to a silsesquioxane core as potential magnetic resonance imaging contrast agents: synthesis, physicochemical characterization, and stability studies.

نویسندگان

  • Jörg Henig
  • Eva Tóth
  • Jörn Engelmann
  • Sven Gottschalk
  • Hermann A Mayer
چکیده

Two macrocyclic ligands, 1,4,7,10-tetraazacyclododecane-1-glutaric-4,7,10-triacetic acid (H(5)DOTAGA) and the novel 1,4,7,10-tetraazacyclododecane-1-(4-(carboxymethyl)benzoic)-4,7,10-triacetic acid (H(5)DOTABA), were prepared and their lanthanide complexes (Ln = Gd(3+), Y(3+)) attached to an amino-functionalized T(8)-silsesquioxane. The novel compounds Gadoxane G (GG) and Gadoxane B (GB) possess eight monohydrated lanthanide complexes each, as evidenced by multinuclear ((1)H, (13)C, (29)Si) NMR spectroscopy and high resolution mass spectrometry (HR-MS). Pulsed-field gradient spin echo (PGSE) diffusion (1)H NMR measurements revealed hydrodynamic radii of 1.44 nm and global rotational correlation times of about 3.35 ns for both compounds. With regard to potential MRI contrast agent applications, a variable-temperature (17)O NMR and (1)H nuclear magnetic relaxation dispersion (NMRD) study was carried out on aqueous solutions of the gadolinium(III) complexes of the Gadoxanes and the corresponding monomeric ligands to yield relevant physicochemical properties. The water exchange rates of the inner-sphere water molecules are all very similar (k(ex)(298) between (5.3 +/- 0.5) x 10(6) s(-1) and (5.9 +/- 0.3) x 10(6) s(-1)) and only slightly higher than that reported for the gadolinium(III) complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (H(4)DOTA) (k(ex)(298) = 4.1 x 10(6) s(-1)). Despite their almost identical size and their similar water exchange rates, GB shows a significantly higher longitudinal relaxivity than GG over nearly the whole range of magnetic fields (e.g., 17.1 mM(-1) s(-1) for GB and 12.1 mM(-1) s(-1) for GG at 20 MHz and 25 degrees C). This difference arises from their different local rotational correlation times (tau(lR)(298) = 240 +/- 10 ps and 380 +/- 20 ps, respectively), because of the higher rigidity of the phenyl ring of GB as compared to the ethylene spacer of GG. A crucial feature of these novel compounds is the lability of the silsesquioxane core in aqueous media. The hydrolysis of the Si-O-Si moieties was investigated by (29)Si NMR and PGSE diffusion (1)H NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), as well as by relaxivity measurements. Although frozen aqueous solutions (pH 7.0) of GG and GB can be stored at -28 degrees C for at least 10 months without any decomposition, with increasing temperature and pH the hydrolysis of the silsesquioxane core was observed (e.g., t(1/2) = 15 h at pH 7.4 and 55 min at pH 8.1 for GG at 37 degrees C). No change in relaxivity was detected within the first 3 h, since the hydrolysis of the initial Si-O-Si moieties has no influence on the rotational correlation time. However, the further hydrolysis of the silsesquioxane core leads to smaller fragments and therefore to a decrease in relaxivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and biological evaluation of a novel Glucosylated Derivative of Gadolinium Diethylenetriaminepentaacetic acid for Tumor Magnetic Resonance Imaging

Cancer detection in early stage using a powerful and noninvasive tool is of high global interest. In this experiment, a small-molecular-weight glucose based derivative of Gd3+-1-(4-isothiocyanatobenzyl) diethylene tri amine penta acetic acid (Gd3+-p-SCN-Bn‐DTPA‐DG) as a novel potential MR imaging contrast agents was synthesized. Gd3+-p-SCN-Bn‐DTPA‐DG was synthesized with reacting of Glucosamine...

متن کامل

Synthesis and biological evaluation of a novel Glucosylated Derivative of Gadolinium Diethylenetriaminepentaacetic acid for Tumor Magnetic Resonance Imaging

Cancer detection in early stage using a powerful and noninvasive tool is of high global interest. In this experiment, a small-molecular-weight glucose based derivative of Gd3+-1-(4-isothiocyanatobenzyl) diethylene tri amine penta acetic acid (Gd3+-p-SCN-Bn‐DTPA‐DG) as a novel potential MR imaging contrast agents was synthesized. Gd3+-p-SCN-Bn‐DTPA‐DG was synthesized with reacting of Glucosamine...

متن کامل

Gadoxane – A Novel Degradable Silsesquioxane Based Macromolecular MRI Contrast Agent

Introduction Since their discovery polyhedral oligosilsesquioxanes (POSS) have found an ever increasing number of applications in material science, catalysis, as building blocks for dendrimers and only recently biomedical use (e.g. as drug carrier systems) were reported as well. In the last two years studies of silsesquioxane based contrast agents (CA) for MRI were published [1,2] in which the ...

متن کامل

Gadolinium-Diethylenetriaminepenta-Acetic acid Conjugated with Monoclonal Antibody C595 as New Magnetic Resonance Imaging Contrast Agents for Breast Cancer (MCF-7) Detection

Background: The monoclonal antibody, C595, against breast cancer cell line was conjugated with cyclic anhydride gadolinium-diethylenetriaminepenta-acetic acid (Gd-cDTPAa) to produce Gd-DTPA-C595 and used as specific breast cancer cell line (MCF-7) contrast agents in magnetic resonance imaging (MRI).  Methods: After incubation of breast cancer cell line (MCF-7), with different contrast agents (G...

متن کامل

A New Potential Contrast Agent for Magnetic Resonance Imaging: Iron Oxide-4A Nanocomposite

Background: Magnetic resonance imaging (MRI) contrast agents have an important role to differentiate healthy and diseased tissues. Access and design new contrast agents for the optimal use of MRI are necessary. This study aims to evaluate iron oxide–4A nanocomposite ability to act as a magnetic resonance imaging contrast agent.Materials and Methods: Iron oxide–4A nanocomposite (F4A) was syn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inorganic chemistry

دوره 49 13  شماره 

صفحات  -

تاریخ انتشار 2010